Evolving Network Architectures with Custom Computers
for Multi-Spectral Feature Identification

Reid Porter, Maya Gokhale Neal Harvey, Simon Perkins and Cody Young
NIS-2, Space and Remote Sensing Sciences
Los Alamos National Laboratory, NM, 87544
rporter@lanl.gov

Abstract

This paper investigates the design of evolvable FPGA
circuits where the design space is severely constrained to
an interconnected network of meaningful high-level
operators. The specific design domain is image
processing, especially pattern recognition in remotely
sensed images. Preliminary experiments are reported that
compare Neural Networks with a recently introduced
variant known as Morphological Networks. A novel
network node is then presented that is particularly suited
to the problem of pattern recognition in multi-spectral
data sets. More specifically, the node can exploit both
spectral and spatial information, and implements both
feature extraction and classification components of a
typical image processing pipeline. Once trained, the
network can be applied to large image data sets, or at the
sensor 10 extract features of interest with two orders of
magnitude speed-up compared to software
implementations.

1. Introduction

Evolutionary Algorithms (EA) are a simple but
powerful approach to optimization. The fundamental
problem with EA is computation time. Field
Programmable Gate Array (FPGA) implementations can
provide significant speed-up compared to software
implementations, and the training time of EA can be equal
to, or less than conventional optimization techniques. This
is a primary motivation of this paper. The combination of
EA and FPGA is also seen widely in the field of
Evolvable Hardware, where slightly different motivations
are observed. EHW is often concerned with hardware
design itself, and therefore EA are usually applied to more
primitive hardware building blocks [1]. In practice, this
distinction is often blurred. In the first case, accelerating
software EA experiments often requires algorithmic trade-
offs in order to implement chromosomes efficiently on
FPGAs. In the second case, knowledge of high-level
algorithms is often required to apply EHW design
principles to practical problems.

0-7695-1180-5/01 $10.00 © 2001 IEEE

261

This paper uses the combination of EA and FPGA to
find hardware efficient solutions to pattern recognition
problems. In this paper, the data sets considered are
remotely sensed, multi-spectral imagery and the problem
is referred to as Automatic Feature Extraction (AFE).
AFE attempts to find algorithms that will consistently
separate a feature of interest from the background in the
presence of noise and uncertain conditions. The design
space for hardware efficient AFE comes from two
sources: algorithmic components of conventional AFE
solutions and hardware resources available in FPGA
devices. Network architectures have several properties
that lead to efficient hardware implementation. These
include:

o Inherent Parallel Processing: The final output of a
network is a result of partial calculations performed by
each node.

e Simple Processing Elements: Each node of the
network need only be capable of solving part of a
particular problem and therefore are relatively simple.
e Modular: Nodes are usually homogeneous across the
network leading to simple large-scale designs.

For these reasons, networks appear to be a good
starting point from which to develop hardware efficient
AFE algorithms. This is not a new thing, and is partly why
Neural Networks have received considerable attention for
solving the classification aspect of AFE problems [2].
However, applying classification directly often leads to
poor performance on out-of-sample data and therefore
preprocessing and feature extraction are usually required.
A good set of features will make classification easier and
hopefully lead to good generalization.

One approach to this problem is the co-optimization of
feature extraction and classification components. This
means feature selection can be directed towards easily
classifiable subsets, while simultaneously leading to
simpler classifiers. An example of this approach was
presented in [3] where a morphological shared weight
neural network was used for an automatic target
recognition problem. A problem with the co-optimization

approach is that learning algorithms become complex.
There are a large number of potentially useful
transformations that could be used for feature extraction
and optimization soon becomes intractable. This problem
can be avoided by using EA.

In Section 2, an FPGA fitness evaluator is presented. It
is implemented on the Firebird Custom Computer (CC) by
Annapolis Microsystems [4]. This CC is based around a
Virtex 2000E FPGA from Xilinx. It has four 64-bit local
memories and a 5™ 32-bit local memory and
communicates with a host computer through a 64-bit PCI
bus. The Firebird CC is used throughout the paper to
accelerate evolution of network architectures.

Preliminary work is reported in Section 3 where a
traditional two-layer Neural Network is compared to a
more recently introduced Morphological Network [5] of
comparable size. These networks are applied to a range of
feature identification problems in multi-spectral imagery
in Section 4. Section 5 builds on Section 3 and presents a
novel network node that combines spectral classification
techniques with spatial enhancement and feature
extraction algorithms, in a self contained, modular design.
This means hybrid feature extraction/ classification
architectures that are scalable, inherently parallel and
easily implemented. Section 6, makes an assessment of the
approach by evolving a 3-layer multi-spectral network of
these nodes known as POOKA.

2. Network Fitness Evaluation using CC

Figure 1 illustrates the major components for the CC
fitness evaluator. The host/CC communication for a
pipelined fitness evaluator is very efficient. Large volume
training data is loaded to the CC local memory once, at
the start of the run. During evolution, the host only writes
to and reads on-chip registers. Large volume result data is
retrieved once, at the end of the run.

Input_Memory

Y Tritn_Oata : (1:0) Chromosome oot (7:0}

] 3¢ |
Confy
] N & = regen
- s 8 —=
| twaelay s E A !
| = 8 |
(7]
o £
O
.. Fitnass_Metric
—£3 MemCounter _'_—
Fipeine_Done I
lm&mmn @ Chromasome_Qutput : (7:0)

Fitness_Reg i ll—Oiut'put__M\'-zmory

“Output_Contiol -Register J

Figure 1: Pipeline Fitness Evaluator

262

The Generalized Chromosome implements the search
space. It is configured with the on-chip Config Registers.
By writing to these registers, a particular chromosome is
configured which can then be evaluated. The Generalized
Chromosome receives training data from one memory,
performs the particular processing dictated by the
configuration registers and then outputs the result to a
second memory.

At the same time the truth data, also loaded to local
memory, is passed to a delay unit. This is labeled twdelay
in Figure 1 and implements latency equal to the
Generalized Chromosome Pipeline. The latency-adjusted
truth is then compared to the chromosome output in the
Fitness-Metric unit. Input to the Generalized
Chromosome is assumed to be signed 8-bit integers in the
range {-127:127}. The fitness metric applies a threshold
at 0. A binary metric can then be used which is a hamming
distance weighted by the number of training points in the
True and False classes.

Fitness = (T%T]* 500 + (F%:T)* 500 (1)

Tc is the number of true pixels correctly classified by
the network and Ty is the total number of true pixels in the
training set. Similarly, Fc is the total number of false
pixels correctly classified and Fy is the total number of
false pixels in the training set. A perfect classification will
result in a score of 1000. Since finding all feature pixels is
equivalent to finding all non-feature pixels, two fitness
scores are calculated. The host program chooses the larger
fitness value and assigns it to the chromosome. The
Hamming metric is suitable only for two-class
classification problems and only classification error is
considered. No measure is made of the certainty in
decision such as a distance from the decision boundary.
The benefit of the weighted hamming metric is its
simplicity of implementation in CC.

HOST PROGRAM MAIN() Firebird Interface |
Flie 10 < — methods
for 8 of generations WriteRleg
Population Evaluate ReadReg
Population. Reproduce WriteMom
endior ReadMem
}

Figure 2: Host Program Architecture

The overview of the host program is illustrated in
Figure 2. This shows where the major components (bold)
are implemented. The Chromosome object interfaces the
software chromosome, encoded in the Network object,
with the Firebird. For each chromosome, it sets the
Pipeline-Reset and writes the configuration registers
according to the representation stored in the Network
object. It then clears the Pipeline-Reset and waits for the
Pipeline-Done signal. Once received, the chromosome
object retrieves the fitness score.

3. Morphological and Linear Perceptrons

Neural Networks have been implemented on CC by
several researchers to accelerate both training and
application. A fundamental operation in neural networks
is multiplication. This can be expensive to implement on
Field Programmable Gate Arrays (FPGA) as the number
of nodes and connectivity within the network grows.
Several techniques have been used to reduce this problem:
implementation of partially connected neural networks
[6], and time multiplexing of network nodes using run
time reconfiguration [7].

Morphological Networks have much in common with
Neural Networks but represent a fundamentally different
approach. They have been shown to have equivalent
classification power to neural networks [8] and can be
implemented on FPGAs much more efficiently than neural
networks. Traditional neural networks, using linear
perceptrons, multiply the inputs by weights, and then sum
the result. This linear operation is then followed by a non-
linear thresholding operation to produce the perceptron
output. This is illustrated in Figure 3a. In the
morphological case, the operations of multiplication and
addition are replaced by addition and maximum
respectively. The morphological perceptron is illustrated
in Figure 3b.

Figure 3: a) Linear and b) Morphological
Perceptrons

The definition of the morphological perceptron comes
from work presented in [S]. A multiplicative weight of +1
is also associated with each input, which is described as
an excitory/inhibitory weight. Several other researchers
have suggested morphological networks, but in other

263

forms (9], [10]. Both morphological and neural networks
were implemented on the Firebird CC. Each perceptron
had 12 inputs. Two-layer networks were built by
combining four perceptrons for both the morphological
and linear case. The binary outputs from both
morphological and linear perceptrons were combined with
a logical AND in the output node. This represents a 12-
input, 4 hidden-layer, l-output node network. Table 1
summarizes the resource requirements for the
morphological and neural network implementations.
There is a resource overhead when using the Firebird CC
for memory, clock and PCI bus interface circuits. An
'empty’ design was therefore also implemented so that the
relative cost of the network architectures would be clear.

Table 1: Resource Comparison

. Virtex Total | Design -
Design Resources (%) (%)
(slices) i i
Firebird
Infrastructure 1935 10 0
Morphological
Network 2432 12 2
Neural
Network 3470 18 8

The neural network is approximately 4 times larger
than the morphological design. A timing constraint of
66MHz was casily met by the morphological design with
a pipeline latency of 2 clock cycles. The neural network
design required 3 pipeline stages and several iterations of
Place and Route were required. This suggests relative
resource requirements may be greater for larger neural
network implementations.

4. Application to Multi-Spectral Data Sets

In multi-spectral image processing, a D element vector
in spectral space characterizes each pixel, where D is the
number of spectral channels in the image. In most
traditional ~ approaches to multi-spectral ~ AFE,
classification is applied directly to this D-dimensional
space [11]. Both networks were applied in this way to a
10-band multi-spectral data set. The training images that
were used are depicted in Figure 4. The truth data, which
defines the feature of interest, is depicted in the bright
overlay. Non-feature is also specified, to allow some
pixels to be don't care which do not contribute to fitness.
The training data for non-feature is not shown.

The problem set was designed to span a range of
difficulties. In Figure 4a, the feature of interest is water.
This is the easiest problem of the three since water has a
unique spectral signature. The second problem is to
identify the golf courses. It is believed that this problem is

of moderate difficulty but should have distinguishable
spectral properties. The third training image specifies
urban or 'built-up’ areas as the feature of interest. Urban
areas can include a wide variety of materials and therefore
spectral signatures. It is believed this is the hardest
problem to be solved with spectral information alone.
Truth data was also specified for test images for the golf
course and urban area problems so that a score could be
obtained, and performance quantified.

c) Urban d) Urban test
Figure 4: Multi-Spectral Problem Set

Both morphological and neural networks were evolved
for 5 independent runs for each training image. The
chromosome for the Neural Network is made up of
multiplicative weights in the range {-7,7}. For the
Morphological Network they are additive weights range {-
128, 128: powers of 2} and the inhibitory/excitory weight
{-1 or 1}. The search space size for the two networks is
therefore approximately the same. A generational Genetic
Algorithm with elitism was used [12].

For each run, a population of 200 networks was
evolved for 500 generations. The results are summarized
in Table 2 where a perfect classification will result in a
score of 1000. For comparison, a software experiment was

264

also implemented and a back-propagation learning
algorithm was used. Multiple iterations of back-
propagation were used, but were often caught local
optima. There are many advanced learning algorithms that
may find global optima more consistently, but this is also
true for the EA. The best networks found in the 5 runs
were then applied to the test problems, and results are also
reported in Table 2.

Table 2: Summary of Results

Test Morph. Neural Neural
Problem Netwl:)rk Network Back
Prop.
Training | Mean SD Mean | SD
Water 999 0.1 999 | 0.08 999
Golf 954 3.73 962 | 1.65 937
Urban 759 9.26 788 | 7.69 756
Testing Best applied Best applied
Golf 579 909 768
Urban 660 737 683
The Neural Network architecture outperformed the

Morphological Network architecture in all problems. All
architectures found the problems progressively more
difficult as expected. The following conclusions are made:
1. If a network is to be implemented in hardware,
evolutionary search is a well-motivated learning
algorithm.

2. The Virtex FPGA can efficiently implement
simple multi-bit arithmetic, multiplexing and
small fixed-point multipliers.

3. Both spectral and spatial information are
important in many feature identification

problems of interest.

5. A Multi-Spectral Processing Node

The flexibility of EA suggests development of network
architectures more suitable for multi-spectral image
processing. Modern multi-spectral sensors are now being
produced with high spatial resolution. To exploit these

advances in sensor technology feature identification
algorithms must utilize both spectral and spatial
information. Figure 5 illustrates the spatial-spectral

processing node.

The node has four inputs (four multi-spectral bands if
applied directly to the data) and one output. The four
inputs are first combined with a spectral processor that
produces one-output. This output is then input to a spatial
processor. The two additional Precision components are
used for controlling bit widths and handling precision.

In]pxm [?(%Bsufnp&?f‘:“(%;;(g:m
'yl

-'nnﬁg: 3R:0)
! ultCoets : (37
apymCects &

Precision

ReadAddress : (710}

WriteAddress ('L)
<

§ . ; Spatial

L

Precision

Ouput : (7:0)

Figure 5: A Spatial-Spectral Processing Node
5.1 The spectral processor

The spectral processor can be considered a hybrid
network node that incorporates both linear and
morphological network functionality. Two coefficients
are associated with each image plane and are applied
according to Equation 2. The sum coefficients have a
range between -127 and 127. The Multiplicative
coefficients may assume values between -7 and 7.

(2)

Output = (Input + Sum,,.) * Mult .

Both images then pass to the Arith-Morph-Mux
(AMM) unit that is illustrated in Figure 6. This processing
block incorporates the fundamental flexibility of both
spectral and spatial processor. The block is based around
a programmable add/subtract unit. With the addition of
control logic and multiplexers, the block can be
configured to perform a number of functions of two
inputs. A particular function is configured by setting 3
control lines Mux, Func and Morph. The corresponding
functions are described in Table 3.

The spectral processor chromosome has four sets of
coefficients and configuration bits for 3 Arith-Morph-Mux
units (a two-layer binary tree).

5.2 The spatial processor

The Spatial Processor is applied to a single input
image and implements functions of a S5 by 5
neighborhood. Figure 7 depicts the 5 by 5 register array
associated with the operator. The input image is supplied
to the processor through the row0 input. Four row outputs

265

(on the right of the image) input to image-width row
buffers whose outputs supply rowl through rowd inputs.
Each register has an associated output so that the
neighborhood function can be applied.

o C CER Qugut: (11:0)
3 uxD1/Z\———-' fid12

Figure 6: The Arith-Morph-Mux (AMM) unit

[

U —

uxD12-

1
i

Table 3: Functions of the AMM unit

Control Bits Function
(AMM) Applied to pixels p; and p,
Mux | Func | Morph

0 0 0 Average (p;+p/2
0 0 Difference (p; - p2)/2
0 1 0 Maximum v {p. p2}
0 1 1 | Minimum A {p1 p2}
1 * 0 Select p,
1 * 1 Select p,

Figure 7 5by5 Spatial Kernel

The spatial operator uses a particular order to combine
the 25 input pixels into 1 output pixel. It is implemented

with a binary tree made from Arith-Morph-Mux (AMM)
units and Arith-Morph-Abs (AMA) units. The AMM units
were discussed with respect to the Spectral Processor. The
AMA unit replaces the multiplexing functionality with an
absolute value operation. The modified configuration bits
are summarized in Table 4.

Table 4: Configuration of AMA Unit

Control Bits (AMA) Function
Mux | Func | Morph | Applied to pixels
py and p,
1 0 I (p1+p2)21
I 1 L (py-pa/2]

Image-processing algorithms motivate the order of
combination in the binary tree. At the top level, the 25
inputs are first combined into 3 rings. These are
superimposed on Figure 5. The 5by5 ring has 16 inputs
and the 3by3 ring has 8. The 3™ ring is the center pixel.
These 3 values are combined with a spectral processor of
3 inputs. There are therefore both multiplicative and
additive coefficients associated with each ring.

VA RingS Out
AMA
From Opposite r
Corner From Opposite
Diagonal
Ring3 Out
—
Centre Out
e

Figure 8: Order of combination
(top-left corner of 5by5 mask)

The order in which pixels are combined in the ring is
important. The order for the 5by5 case is illustrated in
Figure 8. First, the corners of each ring are found. In the
5by5 case, a 4-input network of AMM units is used. This
can be configured to find the average, maximum or
minimum of the corner pixels (or any subset of). The
corner averages can be used to estimate a gradient by
combining opposite corners with the AMA unit. In this
case, an absolute value of the difference represents the
magnitude of an edge response [13]. Once opposite
corners have been combined, the two diagonals that result,
are combined with another AMA unit. This is most clearly
seen in Figure 8.

Each ring can return an average, maximum, minimum
or edge response. By associating weights with these rings,
a hybrid linear/non-linear spatial filter is implemented.

266

By setting weights appropriately, Gaussian smoothing and
simple combinations of Gaussian functions can -be
tmplemented [14]. In this respect, the architecture is
similar to that found in Convolutional Neural Networks
[15]. However, in addition, the morphological aspect of
the spatial filter means a rich variety of non-linear spatial
filters can also be implemented. Examples of these include
erosion, dilation and morphological range operators [16].
Aspects of the spatial processor worth particular note:

1.. The combination of edge responses and
smoothing is optimized by the EA. This is a
powerful measure of texture. Convolution
kernels by Laws [17] and their modifications in
[18] are excellent examples of this type of linear
filter.

The combination of linear and non-linear
components is also optimized by the EA. For
example, linear combinations of erosions and
dilations. This is similar to hybrid L-filters [19]
and pseudo-granulometries [20].

To encourage rotationally invariant operators, and to
reduce the size of the search space, only one quarter of the
tree is configured. The configuration for the top left
quadrant of the tree is used in the other three quadrants.
This is a common way of enforcing rotationally invariant
structuring elements when optimizing morphological
filters. Figure 9 illustrates the technique. Only the top-left
portion of the neighborhood with gray background is
configured. This configuration is then rotated through the
four quadrants. In this example, a particular configuration
produces a filter that depends only on pixels that arc
crossed. In terms of morphology this is known as a
structuring element and the result can be seen on the right
of Figure 9.

0

Figure 9: Shared Configuration

The spatial processor chromosome has three sets of
coefficients associated with the 3 rings. With shared
configuration, the AMM/AMA network requires 10 sets
of the mux, func and morph configuration bits.

5.3 Band selection and precision

Input to the node is assumed to be 8 bit 2's
complement values. Local memory resources of the
Firebird CC dictated an upper limit of 12 channels. Each
input to the node can receive input from any of the 12
channels. To accommodate a variable number of bands,
tri-state bus resources were used to implement large
multiplexers.

Input data is first scaled to the range {-127:127}. The
multiplicative weights, used to combine inputs in the
Spectral Processor, and the center, 3by3 and 5byS5 rings in
the Spatial Processors produce 12 bit signed outputs at
full precision. It is desirable to maintain a consistent bit-
width between input and output so that nodes can be
easily cascaded to form networks. In this case, the EA is
used to select which 8-bits should be used in the 12-bit
output. This effectively scales the output, by dividing by
powers of 2. Tri-state buses are used to multiplex the
twelve bit input data. By setting control lines the bus
effectively divides by [,2,4,8 or 16. Data outside of the
range {-127:127} after this scaling will saturate. This is a
good example of how EA can be used to find solutions
within a design space of finite hardware resources.

5.4 Node representation

The general structure of the node chromosome can be
seen in Figure 10. The chromosome is made up of a
combination of BITS, found in the AMM and AMA unilts,
and an additional absolute value operation implemented in
the precision unit. There are also integers, used in
spectral/spatial processor coefficients, and in the precision
unit divider.

AMM AMM AMM

< I o oM

0.6

I

e FH - EH
—_— s) Aps(d

— AMM AMM AMM AMM AMM

L o4 < [[ITTITIT} (30bits)
Muit Coef

T wed EH EH EH

Tsel T Absd

Figure 10: Node representation and mutation tree

Similar to the hardware, the chromosome is stored
hierarchically in a number of objects in software. When
mutation and crossover are applied to the node, there is a
certain probability that they affect particular components.
This can be considered a probability tree and Figure 10
shows the values used for mutation. Once mutation
reaches a terminal node, there is equal probability of

267

mutation within the subgroup. Crossover points are
chosen in a similar way but are not discussed further.

6. POOKA: A Multi-Spectral Network

A 3-layer, 9 node network was implemented. The
Generalized Chromosome for this network is illustrated in
Figure 11. Therc are 16 inputs to the network at the first
layer and therefore a total of 16 multi-spectral channcls
are chosen from the training data. This results in an
additional 16 integers in the network chromosome. More
than | node can get input from the same image channel.
Each node in the second layer receives input {rom the four
outputs of the first layer. The order of inputs for second
layer nodes is kept constant for crossover. This means the
first input of the IS node is the same first input for 16, 17
and I8 nodes.

*(Dm,nn EReell}

Figure 11: The 3-layer 9-node network

Several extensions to the Fitness Evaluator
architecture of Section 2 were required to implement this
larger network. These can only be briefly described in this
paper. The output from each node is sent to local memory
so that the host can retrieve it. Each node is also allocated
a separate rwdelay and Fitness Metric unit. This means
fitness can be calculated on the output from each node.
The training data associated with each node is also
flexible. This means a total of 9 target classifications can
be supplied to the network, one for each node.

Several extensions of the Host Program were also
required. Multiple populations were used, each associated
with a network node. Evolution within each population
was kept independent to encourage specialization. This
also means incremental learning techniques [21] can be
implemented easily. Incremental evolution of the POOKA
network can be considered a 3-stage process:

1. The four 1* layer nodes are evolved in parallel in
four different populations. Since a fitness is
calculated on the output from each node, these
populations can be evolved independently.

2. In the second stage, the best 1* layer nodes in
each population are configured and remain fixed.
The 4 nodes in the 2™ layer are then evolved
independently in 4 populations.

3. In the third stage, the best 2™ layer nodes are
also configured. Both 1" and 2™ layer nodes
remain fixed and the output node is evolved.

To maximally utilize the fitness evaluator resources,
all 9 nodes should be involved in evolution at all times.
This is not possible with the Incremental Learning
approach. It is possible to evolve higher layers while
lower-level nodes are evolved. This means the 1%, 2™ and
3" layers are evolved in Stage 1. Only the 2" and 3 are
evolved in Stage 2 and just the 3™ layer in Stage 3. This is
the approach used in this paper, and is illustrated in Figure
12.

Stage 1 Fixed Stage 2 Fixed - Stage 3

AN AA A AAAY,

NYNY FFNY VIV
Y % %

Figure 12: 3-Stage Incremental Learning

After Incremental Evolution, a variable number of
Optimization Cycles are applied. This is most similar to
greedy strategy suggested in [21] and is used to encourage
collaboration between network nodes. This is an important
concept in evolutionary neural networks and complex co-
evolutionary strategies have been suggested [22]. In
POOKA, optimization is a 9-stage process. The best
nodes found after incremental evolution are configured.
Each node is then taken in turn, and evolved for a number
of generations with fitness calculated on the final output
from the network (3" layer output). This is illustrated in
Figure 13. The Optimization Cycle is used to promote
nodes that may not score well individually, but lead to
better scores in the network as a whole.

268

Stage 1 Stage 2 Stage 9

VVV UV
VVVV VVVV

Figure 13: 9-Stage Optimization Cycle

6.1 Resource usage and evaluation of speed-up

The 9-node, 3-layer network was implemented at SOMHz
and approximately 64% of the Virtex 2000E FPGA. Pre
Place and Route the usage was estimated at 45%. This
indicates significant room to optimize the design. All
components of the network and fitness evaluator
architectures were designed with structural VHDL to
which placement constraints can be applied. This
effectively allows the design to be manually placed, which
can significantly improve density and clock rates.
Evaluating speed-up of the architecture compared to
software implementations is a difficult problem. Raw
processing speed is not the only factor, since quality of the
feature extraction algorithm is also important.

In the case of raw processing speed, one measure of
performance is estimated by considering a high-level
approximation of network components. In this case, the
quality of algorithm is not considered, but rather the
execution time of a particular chromosome. For the
software, execution time was estimated by implementing a
number of optimized image processing operators. For
each Spectral Processor in the network, a linear
combination was used. For each Spatial Processor, a 5by5
neighborhood average was calculated. The software
experiment performed a total of 9 linear combinations of 4
images and 9 5by5 neighborhood averages. The execution
times and relative speed-up are summarized in Table 5.

Table 5: Evaluation of Speed-up

Image Size | Software RC Speedu

(pixels) | Evaluation | Evaluation P P
(Seconds) | (Seconds)

65536 0.18 0.0016 112
131072 0.36 0.0029 124
262144 0.71 0.0055 129
524288 1.39 0.0105 122
1048576 2.75 0.0201 136

6.2 Application to multi-spectral data sets

The network was trained on the 3 multi-spectral
problems used in Section 4. The training time for each
probiem, including reading and writing training data was
approximately 54.5 seconds. This included 52 seconds in
evolution: 18.7 seconds of incremental development,
followed by two optimization cycles of 16 seconds each.
Populations of 200 nodes were evolved for approximately
180 gencrations.

c) Urban Training: 979 d) Urban Testing: 959
Figure 10: Output images from POOKA
(fitness out of 1000)

Results for the water identitication problem are not
shown since the problem was casily solved and a pertect
classificatton was obtained on the training data. Similar
performance was observed for this problem in Section 4.
The outpwt images and fitness scores for the golf course
and urban arca problems are shown in Figure 10. Quiput
images {rom the training data are shown on the left, and
the output found on the test images are shown on the right.
Fitness scores are caleulated using Equation 1. and a
perfect classification results in a score of 1000.

The POOKA network out-performed the
morphological and neural networks of Section 4 on all
problems. This is not surprising since these networks did
not use spatial information. A more comprehensive
comparison has been made o advanced spatio-spectral
soltware techniques and results have been promising. Thig
comparison will be presented in future publications.

269

7. Discussion and Future Directions

Network architectures are naturally suited to
implementation on CC. Such architectures are casily
scalable and inherently parallel. Evolutionary search is an
effective means to optimize network architectures if the
training time is reasonable. By implementing networks on
CC, evolutionary search is a particularly attractive
learning algorithm. The flexibility of evolutionary search
means network architectures can be implemented with a
particular problem in mind.

A novel network node was suggested for multi-spectral
feature identification. It combines both spectral and
spatial information using an image processing inspired,
morpho-linear network. A 3-layer network of these nodes
was described and preliminary results reported. Speed-up
of two orders of magnitude compared to a software
implementation of similar complexity was achicved. The
cffectiveness ol cvolutionary scarch, applied to large
nctworks, can be improved by implementing multiple
Fitness Metric units. This also has the advantage of
allowing ditferent target classifications to be associated
with different nodes. Such flexibility may be used to direct
evolution tor more difticult problems. For example, a
beach finder may be formed by combination of other high-
level features such as land and water. Multiple Fitness
Metric units altow some nodes to be trained to find water.
and others to find beach, in parallel.

An interesting future direction will be to extend the
network architecture presented by introducing state. This
can be readily implemented with the Fitness Evaluator
architecture since the output from each node is stored in
the local memory. These output images can be considered
the current state of the node. They can be ted back. as
input to the node. to implement functions of state. Such
architectures have several interpretations. In one sense.
the network implements multi-layered gray-scale cellular
automata |23). in which the transition rules are an
engineered subset drawn from image processing. Another
interpretation is a multi-layer cellular neural network [24].
or more accurately, a cellular morpho-linear network.
Fitness evaluation for these types of architectures will
requirc multiple passes of the training data for cach
chromosome. These architectures are potentially
applicable to real-time multi-spectral image processing.

8. References

1.

11.

12.

Miller, J.F., D. Job, and V.K. Vassiley,
Principles in the Evolutionary Design of Digital
Circuits - Part I. Genetic Programming and
Evolvable Machines, 2000. 1(1): p. 7-35.
Bishop, C.M., Neural Networks for Pattern
Recognition. 1995, Oxford: Oxford University
Press.

Won, Y. and P.D. Gader. Morphological Shared-
Weight Neural ~ Nerwork for Pattern
Classification and Automatic Target Detection.
in IEEE International Conferenec on Neural
Networks. 1995.
Annapolis, M.,
2001.

Ritter, G.X. and P. Sussner. An introduction to
morphological neural networks. in [3th
International Conference on Pattern
Recognition. 1996. Vienna, Austria.

Chung, Y.Y., et al. [Implementing Neural
Network in Custom Computers. in IEEE
International Conference on Systems, Man and
Cybernetics : Conference Theme : Intelligent
Systems for Humans in a Cyberworld. 1998. San
Diego, California, USA: IEEE.

Eldredge, J.G. and B.L.Hutchings, Run-Time
Reconfiguration: a method for enhancing the
Sfunctional density of SRAM-based FPGAs.
Journal of VLSI Signal Processing, 1996. 12(1):
p. 67-86.

Sussner, P. Morphological Perceptron Learning.
in Joint Conference on the Science and
Technology of Intelligent Systems. 1998.
Maryland: IEEE.

Wilson, 8.S. Morphological Networks. in Visual
Communications and Image Processing 1V.
1989: SPIE.

Yang, P. and P. Maragos, Min-Max Classifiers:
Learnability, Design and Application. Pattern
Recognition, 1995. 28(6): p. 879-899.
Figueiredo, M.A. and C. Gloster. Implementation
of a Probabilistic Neural Network for Multi-
spectral Image Classification on an FPGA Based
Custom Computing Machine. in Vth Brazilian
Symposium on Neural Networks. 1998. Belo
Horizonte, Brazil: IEEE Computer Society.
Mitchell, M., J.P. Crutchfield, and R. Das.
Evolving Cellular Automata with Genetic
Algorithms: A Review of Recent Work. in First
International ~ Conference on Evolutionary
Computation and Its Applications (EvCA'96).
1996. Moscow, Russia.

http:/fwww.annrapmicro.con/.

270

15.

20.

AN

22.

23.

24.

Jain, AK., Fundamentals of Digital Image
Processing. Pretice Hall Information and System
Sciences Series. 1989, New Jersey: Pretice Hall.
Macleod, 1.D. and A. Rosenfeld, The visibility of
gratings: Spatial frequency channels or bar
detecting units. Vision Research, 1974. 14: p.
909-916.

LeCun, Y. and B. Boser, Convolutional networks
for images, speech and time series, in The
Handbook of Brain Science and Neural
Networks, M. Arbib, Editor. 1995, MIT Press:
Cambridge, MA. p. 255-258.

Woods, R.C.G.a.R.E., Digital Image Processing.
1993, Reading, Massachusetts: Addison-Wesley
Publishing Company.

Laws, K. Texture energy measures. in
Proceedings of Image Understanding Workshop.
1979.

Pictikainen, M., A. Rosenfeld, and L.S. Davis,
Experiments with Texture Classification Using
Averages of Local Pattern Matches. 1EEE
Transactions on Systems, Man and Cybernetics,
1983. SMC-13(3).

Bovik, A.C., T. Huang, and D. Munson, A
generalization of median filtering using linear
combinations or order statistics. IEEE Trans.
Acoust., Speech, Signal Processing, 1983. 31: p.
1342-1350.

Aubert, A., D. Jeulin, and R. Hashimoto. Surface
Texture Classification from Morphological
Transformations. in 5th International
Svmposium on Mathematical Morphology. 2000.
Palo Alto, California: Kluwer Academic
Publishers.

Potter, M.A. and K.A.D. Jong. Evolving Neural
Networks with Collaborative Species. in
Proceedings of the 1995 Summer Computer
Simulation Conference. 1995. Ontario, Canada.
Moriarty, D.E. and R. Miikkulaiinen, Forming
Neural Nenworks through Efficient and Adaptive
Coevolution. Evolutionary Computation, 1998.
5(4).

Sahota, P., M.F. Daemi, and D.G. Elliman. Using
Genetically Evolving Multi-Laver ~ Cellular
Automata for Image Processing. in Third Golden
West Ineternational Conference on Intelligent
Systems. 1995. Netherlands: Kluwer Academis
Publishers.

Chua, L.O., CNN: A Paradigm for Complexity.
1998: World Scientific Publishing Company.

